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Abstract

The classical Graetz methodology is applied to investigate the effect of local thermal non-equilibrium on the thermal

development of forced convection in a parallel-plate channel filled by a saturated porous medium, with walls held at

constant temperature. The Brinkman model is employed. The analysis leads to an expression for the local Nusselt

number, as a function of the dimensionless longitudinal coordinate, the P�eeclet number, the Darcy number, the solid–
fluid heat exchange parameter, the solid/fluid thermal conductivity ratio, and the porosity.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of forced convection in a porous me-

dium channel or duct is a classical one (at least for the

case of slug flow (Darcy model)). There has recently

been renewed interest in the problem of forced convec-

tion in a porous medium channel because of the use of

hyperporous media in the cooling of electronic equip-

ment. Recent surveys have been made by Nield and

Bejan [1] and by Lauriat and Ghafir [2]. Until recently

the discussion of thermally developing convection has

been confined to the case of slug flow, which is appro-

priate on the Darcy model. For the case of highly porous

media, the Brinkman model is appropriate. Using this

model Nield et al. [3,4] have analyzed the thermal de-

velopment for the cases of a parallel-plate channel or a

circular tube, with the walls being held either at uniform

temperature or at constant heat flux. These analyses

have been made on the assumption of local thermal

equilibrium between the fluid and solid materials in the

porous medium.

This paper is concerned with the more general situ-

ation when there is no longer local thermal equilibrium.

Industrial examples are the cooling of rods in nuclear

reactors and solar energy storage systems; for references

see [5]. For this case, the fully developed situation has

been treated by Nield [5] and Nield and Kuznetsov [6],

but for the Darcy case only. The present work is es-

sentially a composite of the work discussed in [3,5].

For simplicity, we concentrate on the case of a parallel-

plate channel with uniform temperature on the bound-

ary walls. For completeness, we record that a related

numerical study has been reported by Amiri and Vafai

[7].

2. Analysis

2.1. Basic equations

We use asterisks to denote dimensional variables. For

the steady-state hydrodynamically developed situation

we have unidirectional flow in the x�-direction between
impermeable boundaries at y� ¼ �H and y� ¼ H , as il-
lustrated in Fig. 1. The temperature on each boundary is

held constant at the value Tw. At x ¼ 0 the inlet tem-
perature TIN is assumed constant.
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The Brinkman momentum equation is

leff
d2u�

dy�2
� l
K
u� þ G ¼ 0; ð1Þ

where leff is an effective viscosity, l is the fluid viscosity,
K is the permeability, and G is the applied pressure

gradient.

We define dimensionless variables

y ¼ y�

H
; u ¼ lu�

GH 2
: ð2Þ

The dimensionless form of Eq. (2) is

M
d2u
dy2

� u
Da

þ 1 ¼ 0: ð3Þ

The solution of this equation subject to the boundary

condition u ¼ 0 at y ¼ 1, and the symmetry condition
du=dy ¼ 0 at y ¼ 0 is

u ¼ Da 1

�
� cosh Sy
cosh S

�
; ð4Þ

where

S ¼ 1

MDa

� �1=2
: ð5Þ

The mean velocity U is defined by

U ¼ 1

H

Z H

0

u� dy�: ð6Þ

A further dimensionless variable is defined by

ûu ¼ u�

U
: ð7Þ

This implies that

ûu ¼ S
S � tanh S 1

�
� cosh Sy
cosh S

�
: ð8Þ

Nomenclature

cP specific heat at constant pressure

(J kg�1 K�1)

Cn;Dn coefficients defined by Eqs. (33)–(36)

Da Darcy number, K=H 2

FnðyÞ, SnðyÞ eigenfunctions
G applied pressure gradient (Nm�3)

h heat transfer coefficient (Wm�2 K�1)

hfs specific fluid–solid heat transfer coefficient

(Wm�3 K�1)

H half channel width (m)

k fluid thermal conductivity (Wm�1 K�1)

kr thermal conductivity ratio, ks=kf
K permeability (m2)

M leff=l
Nu local Nusselt number defined by Eq. (38)

Nu mean Nusselt number defined by Eq. (41b)

Nh;Nf ;Ns parameters defined in Eq. (19)
Pe P�eeclet number defined by Eq. (17)
q00 wall heat flux (Wm�2)

S ðMDaÞ�1=2
T � temperature (K)

TIN inlet temperature (K)

Tb;eff effective bulk mean temperature (K)

Tw wall temperature (K)

u lu�=GH 2

u� filtration velocity (m s�1)

ûu u�=U
U mean velocity defined by Eq. (6) (m s�1)

x x�=PeH
x� longitudinal coordinate (m)

y y�=H
y� transverse coordinate (m)

Greek symbols

g fluid–solid heat exchange parameter

h ðT � � TwÞ=ðTIN � TwÞ
kn eigenvalues

l fluid viscosity (kgm�1 s�1)

leff effective viscosity in the Brinkman term

(kgm�1 s�1)

q fluid density (kgm�3)

/ porosity

Subscripts

b bulk

eff effective

f fluid

ref reference

s solid

w wall

Fig. 1. Definition sketch.
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We assume that the P�eeclet number is sufficiently large
for axial conduction to be neglected. We also assume

that T �
s and T �

f are governed by the steady-state heat

transfer (energy) equations ([1], Eqs. (6.54), (6.55))

ð1� /ÞrðksrT �
s Þ þ hfsðT �

f � T �
s Þ ¼ 0; ð9Þ

/rðkfrT �
f Þ þ hfsðT �

s � T �
f Þ ¼ ðqcPÞfv�rT �

f : ð10Þ

Here hfs is a specific fluid–solid heat transfer coefficient,
related to a standard heat transfer coefficient h by

hfs ¼ afsh, where afs is the specific surface area. (See
Section 2.2.2 of [1].) We define

h�
f ¼ T �

f � Tw; h�
s ¼ T �

s � Tw: ð11Þ

For the case of unidirectional flow in the axial di-

rection, where the Darcy velocity v� has the value u� in
the axial direction, and when axial conduction is ne-

glected, Eqs. (9) and (10) reduce to

ð1
�

� /Þks
o2

oy�2
� hfs

�
h�
s þ hfsh

�
f ¼ 0; ð12Þ

/kf
o2

oy�2

�
� hfs � ðqcPÞfu�

o

ox�

�
h�
f þ hfsh

�
s ¼ 0: ð13Þ

Eqs. (12) and (13) must be solved subject to the wall

boundary conditions

h�
f ¼ h�

s ¼ 0 at y� ¼ H ; ð14Þ

the symmetry conditions

oh�
f

oy�
¼ oh�

s

oy�
¼ 0 at y� ¼ 0; ð15Þ

and the inlet condition

h�
f ¼ hIN at x� ¼ 0: ð16Þ

Dimensionless variables are now introduced, with H

taken as length scale and hIN as the temperature scale.
We will present our results in terms of a Nusselt number

(defined in Eq. (38) below), the porosity /, and four
other dimensionless parameters, namely a P�eeclet num-
ber, Pe, a porous medium conductivity ratio, kr, and a
solid–fluid heat exchange parameter, g, defined as fol-
lows:

Pe ¼ UHðqcPÞf=kf ; kr ¼ ks=kf ; g ¼ hfsH 2=keff ; ð17Þ

where

keff ¼ /kf þ ð1� /Þks: ð18Þ

(The parameter g is related to the Sparrow number Sp
introduced by Minkowycz et al. [8] by g ¼ Sp=4.)
For convenience, we perform the algebra in terms of

the parameters

Nf ¼ /=Pe; Ns ¼ ð1� /Þkr=Pe;
Nh ¼ g½/ þ ð1� /Þkr
=Pe: ð19Þ

Dimensionless variables are defined by

x ¼ x�=PeH ; y ¼ y�=H ; hf ¼ h�
f =hIN; hs ¼ h�

s=hIN:

ð20Þ

Then one gets

½Nso2=oy2 � Nh
hs þ Nhhf ¼ 0; ð21Þ

Nhhs þ ½Nfo2=oy2 � Nh � ûuo=ox
hf ¼ 0; ð22Þ

hf ¼ 0 and hs ¼ 0 at y ¼ 1; ð23Þ

ohf=oy ¼ 0; ohs=oy ¼ 0 at y ¼ 0; ð24Þ

hf ¼ 1 at x ¼ 0: ð25Þ

Since the differential equations (21) and (22) and the

boundary conditions (23) and (24) are all homogeneous,

we can immediately separate the variables. We write

hf ¼ F ðyÞe�k2x; hs ¼ SðyÞe�k2x: ð26Þ

Then we have an eigenvalue problem constituted by

NsS 00 � NhS þ NhF ¼ 0; ð27Þ

NfF 00 � NhF þ k2ûuF þ NhS ¼ 0; ð28Þ

F 0ð0Þ ¼ 0; S0ð0Þ ¼ 0; F ð1Þ ¼ 0; Sð1Þ ¼ 0: ð29Þ

Here the primes denote derivatives with respect to y.

Eigenvalues are denoted by kn and the corresponding

eigenfunction pairs by FnðyÞ, SnðyÞ for n ¼ 1; 2; 3; . . . In
particular,

NsS 00
n � NhSn þ NhFn ¼ 0; ð30Þ

NfF 00
n � NhFn þ k2nûuFn þ NhSn ¼ 0: ð31Þ

For the LTNE case one no longer has a Sturm–Liouville

system to deal with, but from Eqs. (30) and (31), and the

corresponding boundary conditions, it is still easy to

establish the orthogonality resultZ 1

0

ûuFmFn dy ¼ 0 if m 6¼ n: ð32Þ

It is noteworthy that the Sn are not involved in this
condition.

The general solution of Eqs. (27)–(29) is the pair of

series

hf ¼
X1
n¼1

CnFnðyÞ expð�k2nxÞ; ð33Þ

hs ¼
X1
n¼1

DnSnðyÞ expð�k2nxÞ; ð34Þ

where the constants Cn are determined by the entrance

condition (25). Using the orthogonality condition (32) it

follows that
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Cn ¼
R 1
0
ûuFn dyR 1

0
ûuF 2n dy

: ð35Þ

With the solution for hf completed, one can obtain hs
from Eq. (22). One quickly finds that

Dn ¼ Cn: ð36Þ

With the temperature distribution completely found,

one can then compute the heat transfer. Matching the

heat flux at the channel wall gives

q00 ¼ /kfðoT �
f =oy

�Þy�¼H þ ð1� /ÞksðoT �
s =oy

�Þy�¼H : ð37Þ

Following Nield and Kuznetsov [6] the Nusselt

number is defined by

Nu ¼ 2Hh=keff ; ð38Þ

where, in turn,

h ¼ q00=ðTw � Tb;effÞ; ð39Þ

where the effective bulk temperature

Tb;eff ¼
1

UH

Z H

0

u�f/T �
f þ ð1� /ÞT �

s gdy�

¼ 1

H

Z H

0

ûuf/T �
f þ ð1� /ÞT �

s gdy�: ð40Þ

It follows that

Nu ¼
2f/kfðohf=oyÞy¼1 þ ð1� /Þksðohs=oyÞy¼1g

keff
R 1
0
ûu½/hf þ ð1� /Þhs
dy

¼ 2
P1

n¼1 Cnf/kfF 0
nð1Þ þ ð1� /ÞksS0

nð1Þge�k2nx

keff
P1

n¼1 Cn

R 1
0
ûuf/Fn þ ð1� /ÞSngdy

h i
e�k2nx

;

ð41Þ

where, from Eqs. (30) and (31),

F 0
nð1Þ ¼

1

Nf
Nh

Z 1

0

ðFn
�

� SnÞdy þ
Z 1

0

k2nûuFn dy
�
;

S0
nð1Þ ¼

�Nh
Ns

Z 1

0

ðFn � SnÞdy:

ð42a; bÞ

In order to express our results in terms of kr we can
also use

kf=keff ¼ 1=f/ þ ð1� /Þkrg; ð43aÞ

ks=keff ¼ kr=f/ þ ð1� /Þkrg: ð43bÞ

This gives the local Nusselt number. The mean Nusselt

number, averaged over a length x, is

Nu ¼ 1
x

Z x

0

Nudx: ð44Þ

3. Calculations

In order to calculate the eigenvalues and eigenfunc-

tions, it is convenient to express the system (27)–(29) as a

system of four first-order equations by writing y1 ¼ F ,
y2 ¼ F 0, y3 ¼ S, y4 ¼ S 0, where a prime now denotes a

derivative with respect to x. Then

y01 ¼ y2;

y02 ¼ � k2ûu
Nf

y1 þ
Nh
Nf

ðy1 � y3Þ;

y03 ¼ y4;

y04 ¼
Nh
Ns

ð�y1 þ y3Þ:

ð45a–dÞ

These equations may be solved by a shooting pro-

cedure. Each eigenfunction may be normalized by the

requirement that it satisfies the condition F ð0Þ ¼ 1.
Then we have

y1ð0Þ ¼ 1; y2ð0Þ ¼ 0;
y3ð0Þ ¼ l; y4ð0Þ ¼ 0: ð46a–dÞ

Starting with an estimate for the values of k and l, one
can step forward from x ¼ 0 to x ¼ 1 and vary the values
of k and l to satisfy the conditions y1ð1Þ ¼ 0, y3ð1Þ ¼ 0,
simultaneously. This yields the precise eigenvalue, and

the corresponding functions y1ðxÞ and y3ðxÞ constitute
the required eigenfunction. Once the eigenvalues and

eigenfunctions have been obtained, the various other

quantities can be obtained by simple numerical inte-

gration of the integrals that are involved, and the solu-

tion is readily completed. The problem becomes singular

as the horizontal coordinate tends to zero, and so for

small values of this coordinate each infinite series con-

verges slowly. Then one must take a large number of

terms in the series (we were able to handle several

hundreds of them) and suffer some loss of accuracy, but

this was only a minor inconvenience.

4. Results and discussion

There is potentially a vast parameter range to ex-

plore, but we found that the calculations for small values

of Pe and large values of g are particularly difficult
because of failure of numerical convergence. Conse-
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quently, we present results for a very limited range of

parameters, chosen to illustrate the main trends. Also,

we have been content to present just the local Nusselt

number (from which the mean Nusselt number can be

computed; see Eq. (41b)).

All our results are for a porous medium of porosity

/ ¼ 0:5. In Figs. 2 and 3 we fix the value of Pe (¼ 1), and
we present, first for a relatively dense porous medium

(Da ¼ 10�8) and then for a relatively sparse one

(Da ¼ 10�3), plots of the local Nusselt number versus
the longitudinal coordinate for representative values of

the solid/fluid conductivity ratio kr and the solid–fluid
heat exchange parameter g. In the case of fully devel-
oped convection, the special cases kr ¼ 1 and very large
g each correspond to local thermal equilibrium. We
observe that for the developing convection situation

there is a small LTNE effect apparent even when kr ¼ 1.
The most prominent features shown in Figs. 2 and 3 are:

(1) a variation in Darcy number has little effect on the

Nusselt number, (2) the effect of the variation of heat

exchange parameter is small, and the direction of change

depends on the value of kr: as g decreases from large

values, the trend is for Nu to decrease if kr is small and
for Nu to increase if kr is not small, and (3) the Nusselt
number decreases markedly as the solid/fluid conduc-

tivity ratio increases.

In Fig. 4 we present the effect of variation of P�eeclet
number. In the case of local thermal equilibrium, the

dependence on Pe is confined to the scaling of the hor-
izontal coordinate, but in the case of LTNE there is a

further substantial effect. For a given value of x ¼ x�=
PeH , the local Nusselt number increases as Pe increases,
and this effect is particularly large if the solid/fluid

conductivity ratio is small.

The constant-temperature thermal boundary condi-

tions that we have imposed imply that there is local

thermal equilibrium imposed at the boundary. It is to

be expected that this restriction leads to a lower bound

on the magnitude of the LTNE effects. In other words,

with other boundary conditions (e.g. constant-flux

Fig. 2. Plots of local Nusselt number Nu versus longitudinal coordinate x for various values of the fluid–solid heat exchange parameter
g, and conductivity ratios (a) kr ¼ 0:1, (b) kr ¼ 1, (c) kr ¼ 10. All results are for porosity / ¼ 0:5, P�eeclet number Pe ¼ 1, and Darcy
number Da ¼ 10�8.
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ones) LTNE is expected to have a more significant ef-

fect.

In this paper we have been concerned with the effect

of LTNE on the heat transfer as represented by the

Nusselt number. If one asks a different question, namely

under what circumstances is the difference between fluid

and solid temperatures significant, then an answer may

be obtained from a comparison of terms in Eq. (22). The

LNTE effect on temperature differences is insignificant if

Nh is large compared with unity. From Eq. (19), one sees

Fig. 4. Plots of local Nusselt number Nu versus longitudinal
coordinate x for various values of the P�eeclet number Pe, and
conductivity ratios (a) kr ¼ 0:1, (b) kr ¼ 1, (c) kr ¼ 10. All re-
sults are for porosity / ¼ 0:5, fluid–solid heat exchange pa-
rameter g ¼ 1, and Darcy number Da ¼ 10�3.

Fig. 3. As for Fig. 2, but for Da ¼ 10�3.
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that if the conductivity ratio is of order unity then the

LNTE effect on fluid–solid temperature differences is

negligible if g=Pe is large compared with unity. This is in
accord with the conclusions of Minkowycz et al. [8].

5. Conclusion

We have carried out a study on the effect of local

thermal non-equilibrium on the thermal development of

forced convection in a saturated porous medium con-

fined in a channel between parallel plates on which the

temperature is held constant. We have found that the

local Nusselt number is strongly dependent on the values

of the P�eeclet number and the solid/fluid conductivity
ratio, and dependent to a lesser extent on the values of

the solid–fluid exchange parameter and the Darcy

number.
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